Compound Poisson#
- class quantflow.sp.poisson.CompoundPoissonProcess(*, intensity: Annotated[float, Ge(ge=0)] = 1.0, jumps: D)#
A generic Compound Poisson process.
Methods:
Expected value at a time horizon
Expected variance at a time horizon
Same as Poisson process
The characteristic exponent of the Compound Poisson process, given by
Sample jump sizes from an exponential distribution with rate parameter :class:b
Attributes:
Intensity rate \(\lambda\) of the Poisson process
Jump size distribution
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- analytical_mean(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float #
Expected value at a time horizon
- analytical_variance(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float #
Expected variance at a time horizon
- arrivals(time_horizon: float = 1) list[float] #
Same as Poisson process
- characteristic_exponent(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float, u: int | float | complex | ndarray | Series) int | float | complex | ndarray | Series #
The characteristic exponent of the Compound Poisson process, given by
\[\phi_{x_t,u} = t\lambda \left(1 - \Phi_{j,u}\right)\]where \(\Phi_{j,u}\) is the characteristic function of the jump distribution
- sample_jumps(n: int) ndarray[tuple[int, ...], dtype[floating[Any]]] #
Sample jump sizes from an exponential distribution with rate parameter :class:b
- intensity: float#
Intensity rate \(\lambda\) of the Poisson process
It determines the number of jumps in the same way as the
PoissonProcess
- jumps: D#
Jump size distribution
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].