Weiner process#

class quantflow.sp.weiner.WeinerProcess(*, sigma: Annotated[float, Ge(ge=0)] = 1)#

Methods:

analytical_cdf

Analytical cdf of the process at time t

analytical_mean

Analytical mean of the process at time t

analytical_pdf

Analytical pdf of the process at time t

analytical_variance

Analytical variance of the process at time t

characteristic_exponent

Characteristic exponent at time t for a given input parameter

sample

Generate random Paths from the process.

sample_from_draws

Sample Paths from the process given a set of draws

Attributes:

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

analytical_cdf(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float, x: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float#

Analytical cdf of the process at time t

Implement if available

analytical_mean(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float#

Analytical mean of the process at time t

Implement if available

analytical_pdf(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float, x: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float#

Analytical pdf of the process at time t

Implement if available

analytical_variance(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float#

Analytical variance of the process at time t

Implement if available

characteristic_exponent(t: int | float | complex | ndarray | Series, u: int | float | complex | ndarray | Series) int | float | complex | ndarray | Series#

Characteristic exponent at time t for a given input parameter

sample(n: int, time_horizon: float = 1, time_steps: int = 100) Paths#

Generate random Paths from the process.

Parameters:
  • n – number of paths

  • time_horizon – time horizon

  • time_steps – number of time steps to arrive at horizon

sample_from_draws(draws: Paths, *args: Paths) Paths#

Sample Paths from the process given a set of draws

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].