Weiner process#
- class quantflow.sp.weiner.WeinerProcess(*, sigma: Annotated[float, Ge(ge=0)] = 1)#
Methods:
Analytical cdf of the process at time t
Analytical mean of the process at time t
Analytical pdf of the process at time t
Analytical variance of the process at time t
Characteristic exponent at time t for a given input parameter
Generate random
Paths
from the process.Sample
Paths
from the process given a set of drawsAttributes:
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- analytical_cdf(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float, x: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float #
Analytical cdf of the process at time t
Implement if available
- analytical_mean(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float #
Analytical mean of the process at time t
Implement if available
- analytical_pdf(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float, x: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float #
Analytical pdf of the process at time t
Implement if available
- analytical_variance(t: ndarray[tuple[int, ...], dtype[floating[Any]]] | float) ndarray[tuple[int, ...], dtype[floating[Any]]] | float #
Analytical variance of the process at time t
Implement if available
- characteristic_exponent(t: int | float | complex | ndarray | Series, u: int | float | complex | ndarray | Series) int | float | complex | ndarray | Series #
Characteristic exponent at time t for a given input parameter
- sample(n: int, time_horizon: float = 1, time_steps: int = 100) Paths #
Generate random
Paths
from the process.- Parameters:
n – number of paths
time_horizon – time horizon
time_steps – number of time steps to arrive at horizon
- sample_from_draws(draws: Paths, *args: Paths) Paths #
Sample
Paths
from the process given a set of draws
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].